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Abstract Two-dimensional directed site percolation is studied in syslems directed along the 
x-axis and limited by a free swface at y = ~ C X ' .  Scaling coasideratioas show that the surfact 
is a relevant pmurbation to the local critical behaviour when k < I/r.  where z = vll/v is 
the dynamical exponent. The tip-to-bulk order parameter mrrelalion function is calculated in 
the mean-field approximation. The tip percolation probability and the fractal dimensions of 
critical clusters are obtained through Monte Carlo simulations. The tip order parameter has 
a non-universal C-dependent, scaling dimension in the marginal case. k = l / r ,  and displays 
3 stretched exponential behaviour when the pahrbation is relevant. The kdepndence of the 
fractal dimensions in the relevant case is in apemen[  with the results of a blob picture approach. 

1. Introduction 

The shape of the free surface limiting a system may influence its local critical behaviour 
at a bulk second-order phase transition, provided the deviation from the flat surface is long 
range. For comers in two dimensions, wedges or cones in three dimensions, a marginal 
behaviour is obtained, with local critical exponents depending on the opening angle, in 
isotropic critical systems [l-91. This result is linked to the invariance of the shapes under 
isotropic rescaling (see [lo] for a review). 

With parabolic shapes, the surface introduces a relevant perturbation to the flat surface 
fixed point leading, locally, to stretched exponential behaviour for the order parameter and 
the correlation functions 1111. The king model [ll-131, the self-avoiding walk [14] and 
ordinary percolation [15] have been studied for this geometry in two dimensions. 

In anisoaopic systems the correlation length diverges as til - t-Yl along a time- 
like direction and as $1 - t-" in the transverse directions with a dynamical exponent 
z = q / u  [161. Covariance under a change of length scale then requires two different 
scaling factors, bll = b' and bL = b [17]. In this way, the relation between the correlation 
lengths & -($L)~ is preserved. As a consequence, scale-invariant shapes are different from 
the isotropic case: they now correspond to parabolic-like surfaces [%I. For example, the 
marginal shape for the directed walk, with z = 2, is the true parabola in two dimensions, a 
paraboloid or a parabolic wedge in three dimensions [IS, 191. 

In the present work, we study the two-dimensional directed site percolation problem 
inside a parabolic-like system. The scaling behaviour is discussed in section 2. The problem 
is solved in a mean-field approximation in section 3. The results of Monte Carlo simulations 
are presented in section 4 and we end with a discussion in section 5. 
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2. Sealing considerations 

We consider a system displaying anisotropic critical behaviour and limited by a free surface 
at y = &Cxk in the (x ,  y)-plane, where x is the time-like coordinate. Under rescaling, with 
x‘ = x/b‘ and y’ = y j b .  the geometrical constant C transforms according to 
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When k > l j z ,  1/C renormalizes to zero, i.e. the system flows towards the flat surface 
geometry. The perturbation introduced by the free surface is irrelevant with respect to the 
flat surface fixed point. On the contmy, when k < l/z, 1/C grows under rescaling and 
the system becomes narrower locally. The perturbation is then relevant and one expects a 
strong reduction of the order at the tip associated with a new type of local critical behaviour. 
The value k = l / z  corresponds to a scaleinvariant shape leading to a marginal local critical 
behaviour with C-dependent exponents. For an isotropic system, z = I and the marginal 
shape, with k = 1, corresponds to the corner geometry mentioned above. 

Let mo be the tip order parameter, with scaling dimension x, at the fiat surface fixed 
point, on a finite system with size L along the x-axis. Under a change of scale, it transforms 
as 

where t is the thermal scaling field and I/C, which is vanishing at the reference fixed point 
as 1/L in finitesize scaling, is treated as a new scaling field in!xoduced by the parabolic 
free surface. One may also notice that, for a directed problem, the system does not see a 
Rat free surface at x = 0 and xm is also the bulk scaling dimension of the order parameter. 

Taking b = t -” ,  one obtains 

where ,9 = U, and the shape of the system introduces a new length scale given by IC 
as long as the shape is not scale-invariant, i.e. k # 1 /z. In the same way, taking b = It.‘ 
in (2.2). one obtains the following finite-size scaling behaviour at the critical point t = 0 

mo ( 0 . - , -  2. ;) = I c  -xm/rmc (k) (2.4) 

In the marginal case, z = Ilk, the scaling dimension of the tip order parameter becomes 
C-dependent and (2.2) is changed into 

The order parameter correlation function between the origin and a point at (x,y) 
transforms as 
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when L is infinite. With b = x'l2, equation (2.6) leads to 
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These scaling forms will be used later to analyse the mean-field results and the Monte 
Carlo data. 

3. Mean-field approximation 

We consider the site percolation problem on a square lattice, directed along a diagonal of the 
squares as shown in figure l(a), with a site occupation probability p .  The order parameter 
correlation function is the probability density P ( x ,  y) for a site at (x, y )  to be connected to 
the origin. The site at ( x  + 1, y) will be connected too if it is occupied and if at least one 
of its two nearest neighbours at x are themselves connected to the origin (figures l(b)-(d)). 
In a mean-field approximation [ZO] where CorreIations between the Ps on different sites are 
neglected, this occurs with probability 

P(x + 1, Y )  = p I P ( x ,  Y + 1)11 - P(x, Y - I)] + P ( x ,  Y - 1)[1 - P(x, Y + 1)1 

+ P(X, y + 1 ) P ( x ,  Y - 1)) (3.1) 
where the different terms on the right-hand side correspond to the last three diagrams in 
figure 1. 

Going to the continuum limit and neglecting nonlinear terms involving derivatives, one 
is led to the following differential equation: 

aP a z f  - = p -  + (2p  - l ) P  - p P .  ax ay2 

The order parameter is the probability Po for the site at the origin to belong to an infinite 
cluster. For the unconfined system, it is given by the homogeneous stationary solution of 
equation (3.2) as 

(3.3) 

Figure 1. Directed site percolation on the square lattice: (a) the system is directed along the 
diagonal oPthe square lattice; (bXd) the sile at ( x  t 1 ,  y) (full circle) is connected to the origin 
if at least one of its nearest neighbours at x is connected to the origin (full squares). 
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and vanishes at the percolation threshold pc  with an exponent p" = 1. 

leading to 
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Below the threshold and far from the origin, P ( x ,  y) << 1 and (3.2) can be linearized, 

(3.4) 

Through the change of function P ( x ,  y) -+ exp[2(pC - p ) x ] P ( x ,  y) an ordinary diffusion 
equation is obtained, so that 

(3.5) 

for the unconfined system. In d + 1 dimensions the power-law decay would be changed into 
x - ~ I ' .  From a comparison with (2.7) where f is now Ip - pel. one deduces the following 
exponents for directed percolation: 

v ; ; f=1  u " = I  z"=2 x f = L d  2 (3.6) 

where U" follows from scaling. The scaling law p = wx, is verified for the mean-field 
(Gaussian) exponents only at the upper critical dimension d, + 1 which, according to (3.3) 
and (3.6), is equal to 5 for directed percolation. 

On a parabolic system, we use the new variables x and C ( x ,  y) = y / x x  for which the 
free surface is shifted to p = zkC and (3.4) is changed into 

(3.7) 

with the boundary condition P ( x ,  g = &C) = 0. Through the change of function 

equation (3.7) leads to 

(3.9) 

for which the variables separate when k = 1, f or 0. According to (2.1), in mean-field, 
these values of k just correspond to irrelevant, marginal and relevant perturbations. 

Fork = 1, i.e. in the corner geometry, (3.9) gives 

(3.10) 

and the correlation function, which is even in y ,  takes the form 

This is just the unconfined solution (3.5), modulated by a function which depends on the 
two last variables U and w of the scaling function g(u,  U ,  w )  in (2.7). with z = 2 and 
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lc = C2. The critical behaviour is the same as for unconfined percolation as expected for 
an irrelevant perturbation. 

For the true parabola which is the marginal geometry, one may use (3.7) with k = 4 to 
obtain 

which is of the form studied in [le] for the directed-walk problem. Writing Q(x, () = 
+ ( x ) @ ( < )  leads to the following eigenvalue problem for @(<): 

(3.13) 

with + ( x )  - rhZ. The solution, which is even and regular at the origin, can 6e written as 
a series expansion, C,"=oanCzn. According to (3.13), the coefficients satisfy 

(3.14) 

which is the recursion relation for the coefficients of the degenerate hypergeometric function 

(3.15) 

The boundary condition @(C) = 0 gives the eigenvalues I, which are the zeros of 
I FI [ I : ,  I /% -C2/2]. The solution is obtained as the eigenvalue expansion 

(3.16) 

The behaviour at large x is governed by the first term in this expansion which decays 
as x d ,  i.e. with a C-dependent exponent as expected for a marginal perturbation. The 
dimension of the tip-to-bulk correlation function is the sum of the tip and bulk order 
parameter dimensions, the first one being variable. Comparing with the form of the decay 
in (2.7) gives Ai = [x,"f(C) + x$]/z"' and, using (3.6), the tip order parameter dimension 
is given by 

x"'(C) m = 210 2 1  - 3 .  (3.17) 

Its dependence on C is shown in figure 2. 
Analytical results can be obtained only in limiting cases which have already been 

discussed in [18]. When C is infinite, Ai = f, only the first term in the expansion remains, 
which satisfies the initial and boundary conditions, giving back the free solution in (3.5) 
since 1 Fl (i , $; -y2 /2x)  = exp(-yZ/2x). For large C-values, the tip exponent takes the 
following form: 

+o(E)] (3.18) 
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Figure 2. Scaling dimension of lhe tip order p m e t e r  as a l i " t i n  of C in the mean-field 
approximation when the shape is marginal. The local exponent x,$(C) diverges when C + 0 
and goes to its unpermrbed value x,"' = 4 when C -* m. 

where E is the correction term itself. For narrow systems, the hypergeometric function gives 
a cosine to leading order in C2. One obtains the following asymptotic behaviour in x :  

(3.19) 

and the tip exponent diverges as a2/4C2. 

with k = 0 or, more simply, go back to the original equation (3.4) giving 
For the strip geometry, which corresponds to a relevant perturbation, one can use (3.9) 

The solution satisfying the initial condition P(0,  y) = S(y) reads 

in agreement with the scaling form (2.7) for the mean-field exponents. The perturbation due 
to the eee surface induces a simple exponential decay of the correlations at pc .  Actually, 
the system is now one-dimensional and this term corresponds to a shift of the percolation 
threshold by (s/4C)'. 

For 0 < k -= $, the simple exponential is expected to be replaced by a stretched one, 
involving some power of the last scaling variable w = x/lc in (2.7). The power goes to 
1 when k = 0 and has to vanish when the system is marginal (k = 4) in order to give a 
C-dependent decay exponent. A good candidate for the asymptotic behaviour is [IS] 

(3.22) 

It has the proper scaling form (2.7) with mean-field exponents and interpolates between the 
strip result (3.21) and the small-C result (3.19) for the parabola. 
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4. Monte Carlo simulations 

As in the mean-field approach of the last section, the Monte Carlo (MC) simulations were 
performed for site percolation on a square lattice along the diagonal direction. Accurate 
estimates of the percolation threshold and directed percolation exponents have been deduced 
from series expansion in [21] with 

pc  = 0.705489(4) U = 1.097(2) = 1.734(2) 

y = 2.278(2) z = 1.581(3) = 0.276(3) 
(4.1) 

where the last two values follow from scaling laws. 
On the lattice, the sites inside or on the curve y = i C x k  are considered to belong to 

the system. The tip order parameter was calculated on parabolic-like systems with size L 
along the x-axis. On these finitesize systems, PO is the probability that a cluster grown 
from an occupied site at x = y = 0 reaches x = L.  Such a cluster is called ‘infinite’. 
‘Finite’ clusters are those dying before x = L. 

In order to spare computer time the MC algorithm ensures that a cluster reaches x = L 
as fast as possible. This is done by always hying to occupy those sites with the largest 
x-coordinate. The coordinates of sites from which the growth may eventually continue but 
which are closer to the origin are stored in a list of active sites. The growth stops once the 
size of the cluster is equal to L ,  even if it still contains active sites. Thus, the complete 
infinite cluster has not been built. Subsequently, if there are no active sites left, a complete 
finite cluster has been grown. An example is shown in figure 3. 

With this algorithm, which is a modified version of the one used in [ 151 for ordinary 
percolation, the computation time for increasing p > pc remains almost constant. Thus we 
could compute Po as a function of p up to p = 0.8 (k = 112, l/z) for L = 1000 taking 
averages over 10’ samples. The results are shown in figures 4 and 5 for values of C ranging 
from 1 to 4. 

Due to the anisoaopy, finite-size effects remain important. This appears in the non- 
vanishing values of Po(pc) and increases with C, i.e. when the system opens. According 
to the scaling relation (2.3). Pot-# is an universal function of lc/g, and L/fll. This has 
been verified in the relevant case k = for the first of these scaling variables. A good data 
collapse is obtained in figure 6 for C = 1,1.5,. . . , 4  and L = 50,100,. . . , 1000 with a 
fixed ratio L/g,,  = 0.34. 

Pipre 3. Directed prcoladon cluster generated using the Monte Carlo algorithm described in 
the. text. Here, L = 1000, k = i and C = 4. 
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Figure 4. l i p  percolation probability on a panbola (k = 4) with le"@ L = IWO as a function 
of p .  The Monte Carlo results are avenged over IO5 samples for seven values of C &tween 4 
and 1 from top to boaom. The non-vanishing percolation probability a1 the percolation threshold 
(broken line) indicates smng finite-size effects which are increasing with C. 

Figure S. As in figure 4 for the !"@Id wse, k = 112. 

In order to check the expected stretched exponential behaviour in the relevant case, we 
performed a finite-size scaling study at the critical point. The tip percolation probability, 
for k = 4 and 1 < C < 4, was calculated at the percolation threshold on systems with size 
50 < L < 1000, taking averages over 10' MC samples. According to (2.4). P&" is a 
function of L / l c  which depends only on k .  The scaling behaviour i s  shown in figure 7 where 
the deviations at small C values are likely to be due to corrections to scaling. Actually, 
the reference fixed point for which (2.4) was written corresponds to C -+ 00. In this 
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Figure 6. Scaling function Pot-! versus lc/41 in the relevant case (k = 4). A good data 
collapse 1s obtained for the different values of C (same symbols as in figure 4). 

2 L " "  1 " " " ' " " " " " " J  

0 

-6 k=1/2 

1 2 3 4 5 
-8  

0 
( L/I c )  

Figure 7. Finitesize scaling oflhe tip order parameter at Ule critical point for a relevant surface 
shape (k = 4. same symbols as in figure 4 for C). The almost linear variation of In f i r l ~ ' '  
as a function of ( L / I C ) ' - ~ ~  i n d i u t a  3 stretched exponential behaviour of the tip percolation 
probability. 

semi-logarithmic plot, a linear dependence on (L/!C)'-~~ is obtained. It corresponds to a 
stretched exponential behaviour for the scaling function m c ( L / l c )  although some power in 
front of the exponential cannot be excluded. Other simple combinations of z and k for the 
stretching exponent did not lead to a linear behaviour. 

In the marginal case, k = l/z, the scaling dimension of the tip order parameter is 
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Figure 8. S d n g  dimension of the tip order parameter as a function of C obwinod through 
finite-size scaling when the shape is marginal (k = l /z) .  The local exponent x,(C) diverges 
when C -+ 0 and goes to its unpertlnbed value x, = 0.252(3) when C + m. 

expected to vary with C. Equation (2.5). with b = L'I2, leads to the finite-size behaviour 
P&) - L-xm(c)/r at p = pc which can be used to determine x,(C). This has been 
done taking averages for P&) over 2 x IO5 samples with L = 500.520,. . . , 1000. The 
tip exponent was deduced from the asymptotic slopes of log-log plots. The results are 
shown in figure 8. The dependence on C is qualitatively similar to the mean-field one in 
figure 2 the scaling dimension diverges when C vanishes and it decreases to the bulk value 
x,,, = p / u  = 0.252(3) when C goes to infinity. 

The fractal structure of finite critical clusters was also studied. Since details can be 
found in [22]. here we only give a brief summary of our results. As in figure 3, 2 x I @  
percolation clusters starting from the tip were generated at the percolation threshold, inside 
a parabolic system with size L = 1000 for C = 2,3,4 and values of k ranging from 0.25 to 
0.75. The mean-square radii of gyration, (X:) in the x-direction and (U:) in the mansverse 
direction, were determined for s-site 'finite' clusters, i.e. clusters with xmar < L. 

For an unconfined system, the cluster size behaves as 

s - p - p  (4.2) 

where 
an argument of Stauffer [U], are related to the directed percolation exponents through 

= (Xf)'/', = (Y:)"'. The exponents are fractal dimensions which, extending 

dll = B+v = 1.473(2) dL = - + = 2.329(3). 
VI1 v1. 

(4.3) 

The second value is greater than the dimension of the system due to the anisotropy as 
explained in [22]. A single fractal dimension dr may also be defined using the characteristic 
length 1 - ( l l $ ~ ) ' f l  - s ' /~ ,  associated with the surface of the cluster so that [20] 
2/df = I/dll + I/dL and then, dr = 1.805(2) < 2. 

Inside a parabolic system, one expects a similar behaviour with k-dependent fractal 
dimensions dll(k), &(k), when the shape is a relevant perturbation. Log-lag plots of the 
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Figure 9. Fractal dimensions vmus k for finite critical percolation clusters s m i n g  at the tip. 
The variation in the relevant regime, k < l/z = 0.633(2). is well described by the blob picture 
approach (curves) when C decreases. The deviations for large C values are due to the finite 
size of the system: only a few blobs can develop and the fractal dimensions are then closer to 
the unperturbed ones. 

MC results are linear for cluster sizes between 2' and 212-Z'3. Deviations at larger sizes 
are due to finite-size effects. The fractal dimensions are shown in figure 9 as functions 
of k. The form of the variation in the relevant regime, k c l/z, can be obtained using a 
blob picture approach [24-26,141. The cluster configuration is supposed to follow from the 
piling up of anisotropic blobs inside the parabolic system. Within each blob the structure is 
the same as for unconfined clusters with the unperturbed values of the fractal dimensions. 
In this way one obtains [22] 

O c k < l / z  (4.4) 

in good agreement with the Monte Carlo data as shown in figure 9. 

5. Conclusion 

The local critical behaviour for directed percolation has been investigated at the tip of 
two-dimensional parabolic-like systems. The problem has been treated using mean-field 
theory and MC simulations. In the marginal case, k = l/z, the percolation probability and 
the order parameter correlation function display a non-universal local critical behaviour: 
the local exponents vary continuously with the shape of the system. In the relevant case, 
k < l/z, the critical tip percolation probability is a stretched exponential function of the 
reduced size L / l c  and finite critical clusters have k-dependent fractal dimensions. 

Although we were unable, due to strong finite-size effects, to check a similar stretched 
exponential dependence on 511/lc in the relevant case, the following general picture seems to 
emerge from our mean-field and MC results, exact and MC results for the Ising model [10-13] 
and ordinary percolation [15]. 
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In isotropic critical systems, conformal transformations, from the half-space to the 
parabola, of the correlation function and the order parameter profile (with appropriate 
fixed boundary conditions) show that these quantities become stretched exponential 
functions of x / l c  or L / l c  with a stretching exponent 1 - k. According to OUT mean- 
field and MC results, this exponent should be changed into 1 - zk in anisotropic critical 
systems. Conformal methods can no longer be used with anisotropic critical systems 
for which the conformal group is replaced by the Schrodinger group (when z = 2) [27]. 
In isotropic off-critical systems, the tip order parameter is a stretched exponential 
function of $ / I C  (with there IC = C1/( ' -k) )  with a stretching exponent (1 - k ) / k .  
This follows from exact results on the king model [11,12] and also from an 
heuristic argument assuming that the tip order, which is induced by the bulk order 
at a distance D - (c /C) l /k  (where the width of the system is of the order of 
the bulk correlation length), decays with D like the critical tip-to-bulk correlation 
function [ 10,111. The same argument, applied to the anisotropic off-critical system, 
gives a stretched exponential function of $u/lc with a stretching exponent (1 - z k ) / z k .  
Such a behaviour could not be checked numerically here, since our finite off-critical 
system involves some unknown combination of the two scaling variables L / l c  and 

Further numerical and analytical work on anisotropic systems would be useful to confirm 
8s / 1,. 

the last point. 
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